MARK SCHEME for the October/November 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0607	42

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Mark	Part Marks
1 (a) (b) (c)	10 Numerator over-estimates, oe and denominator under-estimates oe 8.55 or $8.546 \ldots$	2	B1 for 3 correct terms of $\frac{\sqrt[3]{1000}}{5}+\frac{20+2^{2}}{\sqrt{9}}$ or B1 for either of 2 or 8 soi B1 for each
(ii) (b)	40.5 oe 210,330 with no extras in range $[x=] \frac{1}{1-a^{2}}$ oe	$\begin{equation*} 3 \tag{i} \end{equation*}$ 3 3	M1 for correct use of $a \log b$ M1 for correct use of $\log a \pm \log b$ B2 for 210 or 330 ignoring any extras from using 30 . or M2 for appropriate sketch or M1 for $\sin x=-0.5$ A1 for 30 or -30 soi M1 Correct squaring M1 Correct multiplication M1 Collection of terms M1 Correct factorisation and division by their $\left(1-a^{2}\right)$ If answer incorrect, maximum possible is M2
3 (a) (i) (ii) (b) (i) (ii)	57.2 56.8 $\begin{aligned} & y=25.9+0.54[0] x \\ & \text { or } 25.92 \text { to } 25.93,0.5397 \ldots \end{aligned}$ 53 or 53.4 to 53.5	1 1 2 1FT	```B1 for \(25.9+m x\), or B1 for \(c+0.54 x\), If 0 scored, SC1 for \(26+0.5 x\) or better FT their (b)(i)```

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0607	42

Question	Answer	Mark	Part Marks
$4 \quad \text { (a) (i) }$ (ii) (b)	Reflection in x-axis Rotation 90° [anticlockwise] [about] origin oe Reflection $y=-x$	1 2 1	B1 for rotation
5 (a) (b)	$\begin{aligned} & -8 \\ & 34-7 n \text { oe } \\ & 32 \\ & 2048 \times\left(\frac{1}{2}\right)^{n} \text { oe } \\ & \text { e.g. } 1024 \times\left(\frac{1}{2}\right)^{n-1} \text { or } 2^{11-n} \end{aligned}$	2	M1 for $-7 n+k$ or $34+k n$ oe $k \neq 0$ M1 for $\left(\frac{1}{2}\right)^{n+k}$ oe soi, where k is an integer
6 (a) (b) (c) (d) (i) (ii) (iii)	49.3 or 49.33 to 49.34 $146,286,446,588,700,800$ Correct graph 46 to 49 26 to 30 74 to 77	2 1 3 1 2 3	M1 for mid-points soi, at least 3 of $(10,25,35,45,55,70$, 90) implied by 39470 All marks in (c) and (d) are dependent on increasing curve. B1 for plotting points at upper group limit B1FT for correct vertical plots B1 for 33 to 35 , or 61 to 63 soi M1 for 0.15×800 or 0.85×800 oe M1 for correct use of their 680 .

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0607	42

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Mark \& Part Marks \\
\hline \begin{tabular}{l}
\(7 \quad\) (a) (i) \\
(ii) \\
(iii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Correct graph
\[
\begin{aligned}
\& x=1.5 \text { oe } \\
\& y=3
\end{aligned}
\] \\
\((0,-3.67)\) or \\
\((0,-3.667\) to -3.666\()\) or \(\left(0,-\frac{11}{3}\right)\) \\
\((-1.83,0) \quad\) or \((-1.833 \ldots, 0)\) or
\[
\left(-\frac{11}{6}, 0\right)
\] \\
\(1.5<x<5.5\) oe \\
and
\[
x<-1
\]
\end{tabular} \& \begin{tabular}{l}
2 \\
1 \\
1 \\
1 \\
1 \\
3 \\
1
\end{tabular} \& \begin{tabular}{l}
M1 for graph in 2 sections, with each section approximately correct. \\
B2 for \(1.5 \leqslant x \leqslant 5.5\) oe \\
or B1 for 1.5 and 5.5 seen or for \(x \leqslant 5.5\) or \(1.5 \leqslant x\) \\
Condone \(\leqslant\) \\
Ignore inclusion of -4 or 6 throughout
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
80 \\
2119 to 2120 \\
107 or 107.4...
\end{tabular} \& 3
3

2 \& | B1 for 3 h 45 min oe or better |
| :--- |
| M1 for $\frac{300}{\text { their time in hours }}$ oe |
| M2 for $\frac{300}{1.05} \times$ their (\mathbf{a}) oe |
| or M1 for $1.05 \times \operatorname{their}(\mathbf{a})$ oe or for $\frac{300}{\text { their new speed }}$ if $>$ their (\mathbf{a}) |
| M1 for $\frac{600}{8.1} \times 1.45$ |
| or SC1 for $\frac{300}{8.1} \times 1.45=53.7$ or $53.70 \ldots$ |

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0607	42

Question	Answer	Mark	Part Marks
9 (a) (b) (c)	99 960 $10000-x^{2}$ oe	2 3	M1 for use of 1.1×0.9 oe M1 for use of 1.2×0.8 oe M2 for use of $\left(1+\frac{x}{100}\right)\left(1-\frac{x}{100}\right)$ oe or B1 for $\left(1 \pm \frac{x}{100}\right)$ oe soi
10 (a) (i) (ii) (iii) (b)	$\frac{6}{336}$ oe $\frac{90}{336}$ oe $\frac{270}{336} \quad \frac{45}{56} \quad$ oe 30	2 3 3 2FT	M1 for $\frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}$ M2 for $3 \times \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6}$ or M1 for $\frac{3}{8} \times \frac{2}{7} \times \frac{5}{6}$ If M0 scored, then $\mathbf{B 1}$ for RRB, RBR, BRR M2 for $3 \times \frac{3}{8} \times \frac{5}{7} \times \frac{4}{6}+$ their (a)(ii) or for 1 -their (a)(i) $-\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$ or M1 for $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}+$ their $\mathbf{(a) (i)}$ or for $\frac{3}{8} \times \frac{5}{7} \times \frac{4}{6}+\frac{3}{8} \times \frac{2}{7} \times \frac{5}{6}$ M1 for $1680 \times$ their $\mathbf{(a) (i)}$
11 (a) (b) (c) (d)	Correctly eliminate 1 variable $\begin{aligned} & x=3 \\ & y=2 \end{aligned}$ $(3.5,5)$ $y=6 x-16 \quad$ oe	M1 B1 B1 2 3 2	or appropriate sketch If $\mathbf{B 0}$ scored, $\mathbf{M 1}$ for correct substitution to find $2^{\text {nd }}$ variable. B1 for each M1 for gradient $=\frac{3}{0.5}$ oe soi M1 for substitution B or M into $y=m x+c$ oe M1 for $(k, k+9)$ substituted into their (\mathbf{c}) if linear

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0607	42

Question	Answer	Mark	Part Marks
12 (a) (b) (c) (d)	30.4 or $30.41 \ldots$ $\sin B=\frac{20 \sin 120}{\text { their } 30.4}$ 34.71 to $34.73 \ldots$ 116 or $115.8 \ldots$ 414 or 413.7 to 413.9	3 M2 A1 4 3	M1 for $x^{2}=15^{2}+20^{2}-2 \times 15 \times 20 \times \cos 120$ A1 for 925 M1 for $\frac{20}{\sin B}=\frac{\text { their } 30.4}{\sin 120}$ becomes M2 if 34.71 to $34.73 \ldots$ seen B1 for angle $A=34.7$ or 34.71 to $34.73 \ldots$ or angle $B=55.3$ or $55.26 \ldots$ to 55.29 M1 for $\quad A B=\frac{12}{\sin \text { their } 34.7}(=21.1)$ oe M1 for $A F=\frac{12}{\tan \text { their } 34.7}(=17.3)$ oe M2 for $12 \times 15+0.5 \times 12 \times$ their $17.3+0.5 \times 15 \times 20 \times \sin 120$ oe or M1 for any correct area.
13 (a) (i) (ii) (iii) (b) (c)	Correct graph 3.32 or 3.321 to 3.322 $[\mathrm{f}(x)]>-10$ 1.74 or 1.736 to 1.737 Translate $\binom{0}{-10}$	2 1 1 1 1 1	M1 for graph with correct shape. Ignore $\leqslant 90$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0607	42

Question	Answer	Mark	Part Marks
14 (a) (b) (c) (i) (ii) (iii)	$\begin{aligned} & \frac{x-3}{x} \\ & \frac{x}{x+3} \end{aligned}$ All correct with no errors $\frac{x}{x+3}-\frac{x-3}{x}=\frac{9}{40}$ $\frac{x^{2}-(x-3)(x+3)}{x(x+3)}\left[=\frac{9}{40}\right]$ oe or better $\begin{aligned} & 360=9 x^{2}+27 x \text { oe } \\ & x^{2}+3 x-40=0 \\ & -8 \\ & 5 \\ & \frac{2}{5} \end{aligned}$	1 1FT M1 M1 A1 1 1 1	their Q - their P i.e. at least one more correct line and no errors or omissions Allow final answer $\frac{-11}{-8}$ but not $\frac{11}{8}$
15 (a)	$x<0.5$ and $x>\frac{4}{3}$	3	M1 for sketch fit for purpose B1 for $x>\frac{4}{3}$ or for $x<0.5$ or for 0.5 and $\frac{4}{3}$ soi

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0607	42

Question	Answer	Mark	Part Marks
(b)	$x>33.2$ or 33.21 to 33.22	$\mathbf{2}$	M1 for appropriate sketch

